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Abstract: Crop response to climatic variation is critical criterion not only in yield and productivity but also, its 

interaction with pathogens. Disease triangle happens under a favourable weather, virulent pathogen and a 

susceptible host. Climate change influences both host plant and pathogens leading to altered interaction and 

disease cycle. Carbon dioxide is a major contributor in the green house gas phenomenon. The consequent 

influence of GHG effect on temperature due to warming and erratic seasonal weather has an impact on both 

plant and pathogen development. Physiological changes in plants impact pathogenicity and disease development. 

Altered crop physiology under climate change is more susceptible to biotic stress. Hence, it is essential to 

understand impact of climate change on host plants to know the disease dynamics.  
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Introduction 

Climate change over past few years is towards global warming and resultant increase in the average 

atmospheric temperature. Green House Gases like carbon dioxide, methane, nitrous oxide, hydro-fluorocarbons etc., 

trap solar radiation resulting in increased atmospheric temperature. Specifically, the CO2 level is the main cause of 

climate change because of its major contribution. Etheridge (1996)1 reported CO2 concentration of 400ppm 

threshold from 285 ppm at the start of 19th century with the trend being attributed to anthropogenic reasons2. Global 

climatic variations influence agriculture tremendously and needs adaptation strategies in farming to enhance 
agricultural production

3
. Climate changes are likely to cause rise in sea levels, frequent weather extremities and 

changes in precipitation. Agricultural production and productivity are totally dependent on climatic situations4,5. 

Global grain demand will double by 2050 as a result of population growth6. Climate change has a great impact on 

host-pathogen interaction and possible alteration in disease dynamics7,8. Estimates suggest at least 10% loss in food 

production due to diseases9. The paper is a review on critical impact of climate change on crop plants and dynamics 

of disease development. 

 

Plant response to changes in water regime 
Crop plants show strong response to climate in its growth and establishment along with other abiotic 

conditions. Changes in water regime influence crop yields while, it may enhance plant-pathogen interaction due to 

increased canopy, total plant biomass and change in micro-climate by favouring certain foliar fungal groups10,11. 

Intensification of agriculture to augment production of a particular crop may lead to increase in pathogen/vector 

population leading to major epidemics12. Crops under abiotic stress especially drought are vulnerable to infection by 

pests and pathogens due to complex interactions. Water stress on crop vs pathogen interaction is complicated with 

lower infection rates under conditions of low RH by several foliar pathogens and plants exhibiting fewer symptoms 

when subjected to drought stress due to poor root development11,13,14. Water-stress may alter resistance mechanism 

and results in development of disease when crop gets exposed to drought 15. Drought and temperature stress 

influence levels of endogenous abscisic acid that affect defence responses involving salicylic acid, jasmonic acid, or 
ethylene16. Increased rain-fall pattern is likely to change the crop-diversity and shifting to new varieties resulting in 

a new disease cycle. Very few reports are available on the potential influence of climate change on the severity of 
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forest diseases. A few predicted devastating diseases reported are epidemics of Phytophthora cinnamomi in oak in 

France17, root rot in woody plants18, and diseases caused by pathogens that infect stress-predisposed trees19.  
 

Plant response to changes in temperature 
Higher temperatures are critical for crop growth may bring changes in soil-ecosystem, alter soil-microbial 

dynamics and responsible for changed plant-pathogen interaction. Temperature and moisture stress together play 

vital role in increasing the vulnerability of crops to diseases due to reduced resistance gene expression and of new 

race development in pathogens20-23. High temperatures are lethal to crops leading to stress related out comes like 

high transpiration losses and poor productivity. Mean seasonal temperature can reduce the duration of many crops 

and hence reduce the yield and quality. Impact of rise in temperature is more pronounced in crops already in 

physiological maximum2. In some pathosystems, resistance gene action may respond differentially to temperature 

fluctuations, decreasing the resistance to invading fungal diseases
24

. Climate change affects defence reaction of host 

plants to very specific reactions in case of gene-for-gene interaction25 and due to failure of temperature sensitive 

genes26. Higher temperatures may add to the lignifications in crop plants as a defence mechanism to pathogen 

entry27.Higher temperatures result in extended growing seasons and allow longer life cycles of insect vectors 
spreading virus diseases. Temperature rise increases stomatal activity28 facilitating virus multiplication and vector 

acquisition process. At higher temperatures virus spread is more by the breakdown of hyper sensitive gene 

response29 and some mutations in virus coat protein gene and result in altered virulence30. Effectiveness of viral 

resistance is reduced at low temperatures in case of gene silencing mechanism31. However, increment to a certain 

level is deleterious to certain viruses32. Kido et al. (2008)33 reported that low temperature leads to expression of 

symptoms while high temperature leads to latent infection in their studies on melon necrotic spot virus. Spread of 

vector-borne diseases depends on changed vector activity due to alterations in host physiology and morphology. 

Increased temperature decreases the effectiveness of single dominant gene resistances making virus resistant 

cultivars susceptible34,35. Altered temperature and moisture may favour weed species formerly unable to establish 

may become reservoirs in spreading pathogens to crop plants36,37.  

 

Plant response to changes in CO2 concentration in atmosphere 
Elevated CO2 concentration results in increased net photosynthetic rates38 and may also alter stomatal 

opening and thereby reduce transpiration rate39. Higher CO2 levels increase canopy due to more photosynthetic 

activity in C3 crops and likely, to offer ground for more disease through multiple life cycles of pathogen40-44. Runion 

et al. (2010)45 concluded that elevated CO2 increases host resistance to Cronartium quercuum f.sp. fusiforme and 

Fusarium circinatum two pathogens of devastating diseases in forest plants. Silicon known to increase disease 

resistance in rice plants46 will be effected by CO2 concentration and increases susceptibility42.Crops with higher 
carbohydrate concentration due to increased CO2 concentration may play host to diseases like rusts47 and are likely 

to influence endogenous metabolites. Mulherin et al. (2000)48 reported that elevated CO2 alters endogenous foliar 

salicylic acid levels and affects plant response to TMV inoculation. Elevated CO2 effects photosynthesis and 

secondary metabolites which may influence vector-borne virus epidemics indirectly due to changed vector 

behaviour49. Increased biomass poses the risk of infection due to increased leaf surface wetness duration and 

regulated temperature conditions for infection by foliar pathogens11,50-53. 

 

Conclusion 
Hosts plants, vectors and pathogens are influenced by climate change effects like, changed rainfall patterns, 

increased temperature, seasonal droughts and elevated CO2 concentration in the atmosphere. These changes are 

likely to alter plant-pathogen interaction which may have positive, negative, or neutral impact on individual 

pathosystems depending on the phenology and physiological changes in the host plants. Crops being cultivated 

under environmental conditions which are not optimum may suffer phenologically and physiologically resulting in 

more susceptibility to biotic stress. Hence, the complex nature of host-pathogen interaction necessitates a clear 

understanding of host response to climate change in sustaining the crop yields. 
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